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Developing fluid flow in a curved duct of square cross-section is studied numerically 
by a factored AD1 finite-difference method on a staggered grid. A central-difference 
scheme with primitive variables is used inside the computational domain to reduce 
numerical diffusion. Two Reynolds numbers, 574 and 790, based upon a bulk 
velocity and hydraulic diameter are chosen for curvature ratios of 1/6.45 and 1/2.3, 
respectively. It is found that the secondary flow is far more complicated than 
expected, with the appearance of a t  least two pairs of vortices. Main-flow separation 
is also observed for the higher curvature ratio. Furthermore, it is observed that the 
flow develops into two quite different states downstream, depending upon the inlet 
conditions. 

Solution of the fully developed Navier-Stokes equations is shown to be not unique 
beyond a certain critical Reynolds number. Developing flow seems to evolve into the 
fully developed state along a particular branch, into which the fully developed 
solution bifurcates. 

1. Introduction 
Fluid flow in a curved duct has played an important role in fluid mechanics 

because of its relevance to various engineering applications. Owing to the presence 
of secondary flow caused by centrifugal force, fluid flow in a curved geometry differs 
significantly from flow in a straight channel. Much larger pressure drop or friction, 
heat transfer and mixing rates are expected for a flow in a curved duct, except for 
very slow flow. 

Since the discovery of secondary flow in a circular curved pipe by Eustice (1910, 
1911) and the analytical confirmation of its existence by Dean (1927, 1928), 
numerous studies on the flow in curved channels with rectangular or circular cross- 
section have been reported for either fully developed or developing flows. For a 
developing flow in a curved duct Patankar, Pratap & Spalding (1974), Humphrey 
(1977), and Soh & Berger (1984) reported numerical calculations of flow in a circular 
curved pipe. Humphrey, Taylor & Whitelaw (1977) also reported flow calculations 
for a square curved duct. Soh & Berger (1984) showed the appearance of an 
additional weak vortex pair near the inner wall of a circular curved pipe in a 
developing region, and Humphrey, Change & Modavi (1982) reported a two-vortex- 
pair secondary flow downstream of a 180" turning square duct. Recently, Hille, 
Vehrenkamp & Schulz-DuBois (1985) found experimentally an additional weak 
vortex pair near the outer wall in the developing region of the 180" turning square 
bend. They claim that one vortex-pair of the secondary flow evolves smoothly into 
two vortex pairs downstream, beyond a certain critical Dean number. 
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Dennis & Ng (1982) and Nandakumar & Masliyah (1982) reported non-unique 
solutions in their calculations of fully developed flow through a circular curved pipe. 
They show that the solutions bifurcate into two branches if the Dean number exceeds 
some critical value. Along one of the branches one vortex pair, and along the other 
two vortex pairs, appear in the secondary flow. To obtain two vortex pairs in the 
circular curved pipe as an additional solution, which is bifurcated from the one- 
vortex-pair solution, Nandakumar & Masliyah (1982) made an elaborate effort to 
keep the two vortex pairs obtained from the calculation of the semicircular curved 
pipe flow (Masliyah 1980). They changed the cross-section geometry gradually from 
a semicircle to a full circle starting with the initial data from the two-vortex-pair 
solution. In the bifurcation phenomenon of flow in a circular curved pipe the two- 
vortex-pair solution is difficult to obtain unless much care is taken. This indicates 
that the one-vortex-pair solution is predominant over that for two vortex pairs ; or 
it, may be said that the former appears to be a more natural flow phenomenon. 
Nandakumar & Masliyah (1982) report that the two-vortex-pair solution is relatively 
easier to obtain for a curved pipe of semicircular cross-section than for a full circle. 
From this it may be conjectured that for flow in a curved duct of other than circular 
cross-section, such as a square cross-section for example, the two-vortex-pair 
solution is predominant over the one-vortex-pair solution beyond a certain value of 
the Dean number. As mentioned earlier, the experiment of Hille et al. (1985) shows 
the spatial evolution of one pair into two pairs of vortices as flow proceeds 
downstream. It is necessary to  solve the Navier-Stokes equations numerically for 
developing and fully developed flows to show how the secondary flow develops as 
fluid travels downstream, and also to find when the additional vortex pair appears 
as the Dean or Reynolds number increases in the fully developed flow. 

In  this paper, the Navier-Stokes equations are solved numerically to elucidate the 
flow phenomena mentioned above. It is assumed that the flow is laminar, steady, and 
symmetric about the midplane of the cross-section. A central-difference scheme is 
employed inside the computational domain throughout the calculations lest details 
in the secondary flow be washed out numerically. The present central-difference 
scheme on a staggered grid yields stable solutions without a need for artificial 
damping terms. We address three primary issues. We first show how flow develops 
into two quite different flow patterns far downstream depending upon the inlet 
condition. Next, we present and discuss the dual solutions of the fully developed 
Navier-Stokes equations in conjunction with the downstream evolution of 
developing flows of different inlet conditions. And finally we describe the very 
complicated flow development for a highly curved duct. A topological rule is used 
to characterize the extremely complex secondary flow. 

2. Formulation of the problem 
2.1. Governing equations 

The incompressible Navier-Stokes equations are written in dimensionless form as 

au 
at 
- + V * ( U U )  = - V p + R e - ' V 2 ~  = 0, 

v * u  = 0, 

where u, p ,  and Re are the dimensionless velocity, pressure, and Reynolds number, 
respectively. In  order to obtain a steady-state solution, ( 1 )  and (2a )  are to be 
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integrated in time until the solution converges. For imcompressible flow it is not 
straightforward to integrate (1) and ( 2 a )  owing to the special role of the pressure. The 
continuity equation ( 2 a )  is not of a time-evolution form. This prohibits direct time 
advancement for the incompressible-flow computation, which is, however, possible in 
compressible-flow calculations through the equation of state. To overcome this 
difficulty, an artificial compressibility method introduced by Chorin (1967) is 
adopted. With this method, the divergence-free constraint on the velocity ( 2 a )  is 
changed into the time-evolution equation, 

where p is the coefficient of artificial compressibility always having a positive value. 
Equations ( 1 )  and (2 b )  can now be treated like compressible-flow equations, and can 
be integrated with time in a straightforward manner until a steady solution is 
obtained asymptotically. 

The Navier-Stokes equations with artificial compressibility are written in 
cylindrical coordinates as 

where (u, v, w) are the dimensionless velocities corresponding to ( r ,  z ,  $). Figure 1 
shows this, with bars denoting the dimensional variables. The length, time, velocity, 
and pressure are made dimensionless with a, a/W,, W, and p W k ,  respectively. The 
Reynolds number Re is defined as aWJv, where a is the side dimension of the square 
duct, W, the bulk velocity, p the density, and v the kinematic viscosity. The 
operators 9 1 9 t  and V2 are defined as 

Coordinate stretching is based upon the physical consideration that rapid change in 
the flow variables is expected to occur near the wall and the inlet regions, with 

R 
a 

r = -+x(fl) (-0.5 < x(<) d 0.5) 

z = 47) (0 d ~ ( 7 )  d 0.5) 
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FIQURE 1. Cylindrical coordinate system. 

where x(6) = 0.5 tan-’ (~~(k / l -0 .5) ) / tan-~  (0.5s1), z (7 )  = 0.5 tan-’ (sz v/J)/tan-ls,, 
and $([) = $e sinh (8, c/K)/sinh s3. Here I, J ,  K are grid spacing numbers and sl, s2, 
s3 are the parameters controlling grid clustering in the r - ,  z- and $-directions. Then, 
the operators, 9/9t and V2 become 

a a 
- = - + - - (Bz’$’u. ) + - (Br’$’w * ) + 
9 t  at g at a7 

where B = 1 + 6x(c), g = Br’z’$’, and S is the curvature ratio defined as a / L .  A prime 
denotes a derivative. 

2 .2 .  Numerical formulation 
The Navier-Stokes equations (3)-(6) can be rearranged in the ( E ,  7,  @coordinates for 
factorization in conjunction with the present numerical scheme as 

where Q = (u, w, ~ , p ) ~ ,  T denoting transpose, and 

1 a(Br’$’-) 
0 -  
, P9 a7 
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L" ' Ps -~ ' _ I  

Equation (8) is of the same weak-conservative form as (3)-(6). To advance (8) with 
time from time step n, which is the present time where the solution is known, to  the 
time step n+ 1 ,  we approximate the convective velocities u, v, w in the D, E, F with 
the values a t  the time step n, which are denoted by u", u", w". Also C is kept constant 
a t  the value a t  the time step n. Introducing intermediate time steps denoted by 
superscripts * and ** we can integrate (8) as 

(a*-Q") 
At +A,Q*+(A,+A,)Q"+C" = 0 ,  

(0"" - Q") 
At +A,Q*+A,Q**+A,Q"+C" = 0, 

(on+' - 
'"1 + A, Q* + A,Q* * + A, on+'  + c n  = 0. 

At 

Briley & McDonald (1980) introduced a compact form of the above, which is called 
the 'delta form', as 

(I + At A,) AQ* = - At(A, + A, + As) 0" - At C" 

(I+AtA,)AQ** = AQ* (10) 

(I + At As) AQ"+l = AQ** 

(9) 

(11)  

where AQ* = 0"-Q", AQ" = 0""-Q", AQn+' = Q"+'-On, and I is the identity 
matrix. If we call (9), (10) and (11)  the 5-, 7- and [-sweep, respectively, the u-velocity 
is coupled with the pressure p during the 6-sweep. Similarly, u and w are coupled with 
p for each 7- and [-sweep, respectively, in the staggered grid. The present factored 
AD1 scheme on the staggered grid is a direct extension of a two-dimensional 
calculation by Soh (1987). 

2.3.  Boundary conditions 
The flow field under consideration is an 'in-and-out flow ' surrounded by a rigid wall. 
A no-slip condition is given at the wall. At the inlet and exit planes, which are drawn 
arbitrarily in the flow field to define a computational domain, all the velocity 
components except the pressure are specified at the inlet. At the exit, however, only 
the pressure is specified. These boundary conditions are imposed under the 
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assumption that there is no streamwise flow reversal through these planes. At the 
wall 

Owing to the presence of a plane of symmetry, computation is performed in only a 
half-domain of the cross-section with the symmetry boundary condition 

u = v = w = 0 at x = f0.5, z = 0.5. (12) 

au aw 
aZ a Z  
- _ - -  - - v = 0  a t z = O .  

At the inlet we assume the secondary-flow velocity components, u and v, to be 

u = v = 0 a t  [ = -0.5. (14) 

The boundary condition (14) is imposed a t  a half-grid distance ahead of $ = 0 
because of the staggered grid. Figure 2 shows the in-and-out flow boundary condition 
in the [-direction. In  this study the increments in the spatial variables ( A t ,  AT, A[) 
arc set to unity. For axial velocity at the inlet two different conditions on w are 
imposed : (i) a fully developed flow profile in a straight duct of square cross-section ; 
(ii) a free-vortex distribution. The latter condition is chosen from the physical 
consideration that uniform flow entering a curved pipe (e.g. flow into a bend 
immediately after a reservoir) develops quickly into a free-vortex profile (Agrawal, 
Talbot & Gong 1978). For condition (i) an exact solution for w is given as 

r m  1 

where 

and 

a' cosh,xcoshh,z++x2-Q (15a) a t  $ = 0 (i.e. [ =  O), 

A, = (21+ 1 )  n, 
4( - 1)' 

a -  ' - A; cosh (0.5A,) ' 

m = 0.25 [ k!@! sinh (0.5hl)-& . 
z=o A; l 1  

The value of m represents the product of Reynolds number and the dimensionless 
pressure gradient, m = Re (ap/as) ,  where s is a downstream variable in a straight 
duct. For boundary condition (ii) 

where w,, is chosen such that the integration of w over the entire lower and upper 
halves of the cross-section becomes unity (ie.  JJwdxdx = flow rate = 1 ) .  

For the calculation of the w-momentum equation, which is the [-component of (8 ) ,  
a t  the end cell (i.e. at k = K ; k is the grid index in the [-direction) only the pressure 
is given at the exit, allowing pressure variation over the exit cross-section about a 
fixed pressure level. The pressure distribution can be obtained by dropping the a/at  
terms in 9/9t and then integrating the 6- and 7-component of (8): 

p ( i , j , K + l )  = p ( i , I , K + l ) +  2' -- +- v2v d q ,  / [ Z e  ] 1 
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[ =  0 

u, u are given here 

FIGURE 2. Staggered grid in the 5-direction and in-and-out flow boundary conditions. e, p ;  +, w ;  
-, p-cell; - - - -, w-cell. 

were i a n d j  are grid indices in the r- and z-directions, respectively. The previously 
mentioned fixed pressure level is with reference to setting p ( l , l , K +  1 )  constant, 
which is set to zero in the current calculations. Elliptic effects of the Navier-Stokes 
equations would adjust the upstream pressure in accordance with the downstream 
pressure boundary condition (16), yielding pressure gradients which have physical 
meaning in a steady incompressible flow. For real compressible flow we have no 
freedom to choose the fixed pressure level arbitrarily because the value of pressure 
itself has physical meaning. The integrands of (16) are calculated through 
extrapolation using adjacent internal points. The details of the finite-difference 
formulation in the staggered grid and the imposed boundary conditions can be found 
in Soh (1987). 

2.4. Fully developed flow formulation 

The Navier-Stokes equations for fully-developed flow can be written by eliminating 
derivatives with respect to the downstream variable under the assumption that the 
pressure gradient in the downstream direction is constant. Unlike the developing- 
flow case, the bulk velocity W,, or Reynolds number, for the fully developed case is 
not known a priori but is a part of the solution. Because of this the velocity should 
be non-dimensionalized by some reference velocity. Soh & Berger (1987) give the 
reference velocity as 

where p is the dimensional static pressure and G the pressure gradient. Non- 
dimensionalizing the length, velocity, pressure and time by a ,  W,, pW:, and a/W,, 
respectively, reduces (3)-(6) to 

where the tilde denoted dimensionless quantities based upon W,. Re, is the reference 
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Reynolds number defined as aW,./v. The term B-l appearing in the $-momentum 
equation is the constant pressure gradient maintaining the flow. The operators, 
9 / 9 t  and V2, are as given in (7 6 )  without derivatives with respect to 4 .  The coordinate 
transformation in the r- and z-directions is also the same as in (7a ) .  

Because W,, or consequently Re,, is merely a parameter, for a physical 
interpretation it is necessary to find a relation between W, and W,, or between Re, 
and Re. This can be done by considering the flow rate through half of the cross- 
section, with 

O.5Wm = bW,, '1 
where 

therefore RelRe, = 2b. ) 

3. Results and discussion 
3.1. Dejinition of the Dean number 

After Dean (1927) various definition of a dimensionless number, which is now called 
the Dean number, have been introduced depending upon their use. Definition of the 
Dean number for developing flow differs from that for fully developed flow. To avoid 
possible confusion only one Dean number, K = Re c$, is introduced here. This has been 
used both by those who conduct experiments and by those who analyse developing 
flow. K is also a readily derivable quantity for fully developed flow, as will be shown 
later. 

3.2. Run conditions for numerical calculations 
For developing-flow calculations two flow conditions are selected: Case (I) Re = 574 
with 6 = 116.45 (i.e. K = 226); and Case (11) Re = 790 with 6 = 112.3 (i.e. K = 521). 
Case (I) is investigated for two different inlet conditions; ( i )  fully developed straight- 
duct flow as given in (14) and (15a) ; and (ii) a potential vortex profile as in (14) and 
(156). We denote Case (I-i) and Case (I-ii) to be Case (I) for inlet conditions (i) and 
(ii), respectively. For Case (11), only the fully developed straight-duct flow condition 
a t  the inlet is considered. Concerning the grid, (I x J x R) equal to 16 x 11 x 24 and 
20 x 13 x 28 grid points are used for Cases (1-i, ii) and (11), respectively. The run 
conditions, including the artificial compressibility /3, the time step At and the 
convergences, are listed in table 1. The maximum and root-mean-square of V . u  are 
denoted by max ( V - u )  and r.m.s. (Veu),  respectively. Max (u),  max (v) and max (w) 
are the maximum values of residuals of the r - ,  z-  and $-components of 
V .  (uu)+Vp-Re-lV2u, respectively. The exit angle, 9, in (7a), is set to be 180" for all 
cases. The difference in the flow rate between the inlet and the exit when converged 
is less than 0.05 YO of the inlet flow rate for all cases. Computations have been carried 
out on an IBM 37013033. The CPU times for the convergences listed in table 1 are 
about 1.2, 1.4, and 3.2 h for Cases (1-i), (I-ii) and (II), respectively. 

3.3. Main-flow development for Case ( I )  
For the case with the fully developed straight-channel flow profile a t  the inlet, 

which is Case (1-i), the flow is symmetric about x = 0 and has its maximum there on 
the plane of symmetry (i.e. z = 0). Immediately after the flow enters the turning duct 
this symmetry in the axial velocity is broken. This is because the flow is subject to 
a centrifugal acceleration which causes faster moving fluid particles to travel towards 
the outer wall. This also leads to the appearance of the maximum velocity near the 
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Number 
of time 

Case ,!I At s1 s2 s3 max(V.u) r.m.s.(V.u) max(u) max(v) max(w) steps 

(I-i) 0.15 0.06 3 1 1.5 3 . 0 ~  1 . 4 ~  1.2 x 5 . 3 ~  3.2 x 1690 
(I-ii) 0.20 0.08 3 1 1.5 3.0 x 8.5 x 2.8 x 1.4 x 3 . 0 ~  1870 
(11) 0.15 0.07 3 1.5 1.5 8.5 x 1.0 x 4.7 x 4.1 x 2 . 4 ~  lo-' 2300 

TABLE 1 .  Run conditions 

outer wall. Figure 3 (a (i)-d (i)) shows the development of the axial flow on the plane 
of symmetry for Case (I-if. In the region of early flow development the location of 
the maximum axial velocity on the plane of symmetry, which is denoted by x,, 
becomes shifted towards the outer wall from its initial position x = 0 a t  $ = 0 as 
shown in figure 3 ( a )  (i) owing to the centrifugal effect. At $ = 26.8", x, reaches 0.34 
and only moves a little further outward up to  Q1=44". At about Q1 = 44", x, arrives 
at its maximum value of 0.348. This agrees very well with the experiment of Hille 
et al. (1985), which shows that x, reaches 0.35 near $ = 36". In  this early region of 
development the value of the maximum axial velocity w,,, on the plane of 
symmetry decreases as fluid travels downstream. Also the value of w in the wide area 
near the centre a t  x = 0 becomes smaller, which is shown by the arrow in figure 
3 ( a )  (i). In  the downstream region after about 44", x, moves gradually inside towards 
the centre with wmax being further reduced. Unlike the flow in the early developing 
region, w on z = 0 increases near the centre (see the arrow in figure 3b(i)). The 
innermost value of x, is about 0.25 a t  99.3" and stays there up to about 116.5" with 
wmax = 1.66. Farther downstream the axial flow exhibits little change with the 
exception of small oscillations in the velocity profile near the centre. This profile 
shows decreasing (figure 3c(i)) and then increasing (figure 3d(i)) values of w on 
z = 0 far downstream. Figure 3 ( d )  (i) shows no significant variation in w with the 
downstream variable $. It seems that the axial flow is reasonably fully developed 
near the exit. 

The axial-flow development for Case (I-ii) is shown in figure 3(a(ii)d(ii)) .  The 
plateau-like flat area near the centre, which is a potential core, is gradually eroded 
and shifted outward as the flow proceeds downstream. From about 44" the potential 
core becomes no longer discernible. Figure 3 (a) (ii) illustrates this early stage of the 
flow development. After about 44" the axial velocity profiles on z = 0 are similar in 
shape to those of Case (I-i) downstream, as shown in figure 3 (b) (ii). In  this region, 
x, shifts continuously outward until it reaches a value of 0.27 at about 83.8" with 
w,, = 1.64. After this maximum shift towards the outer wall, x, retreats slowly 
towards the centre with wmax still increasing, as shown in figure 3 ( c )  (ii). The value 
of wmax is 1.67 a t  about 135.4". Farther downstream the value of wmax becomes 
smaller and x, migrates continuously towards the centre. Figure 3 (d )  (ii) shows the 
inward movement of x, together with the decrease of w,,, on z = 0. It is noted that 
the axial velocity is still changing even a t  the exit, which indicates that for Case (I-ii) 
the axial flow is far from being fully developed. The axial velocity profile for the fully 
developed flow in figure 3 ( d )  (ii) is obtained by solving the fully developed-flow 
equation (18) using Re,, = 180, which gives Re = 586. 

For Case (I-i) the pressure a t  the inner bend (i.e. x = -0.5, z = 0) decreases 
smoothly all the way to the exit. On the other hand, i t  is found that there is a 
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FIGURE 3. Axial velocity profile on the plane of symmetry: (a(i) ,  b(i), e ( i ) ,  d(i)) for Case (I-i); (a(ii), 
b(ii), c(ii), d(ii)) for Case (I-ii). 
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pressure rise yielding an adverse pressure gradient along the outer bend (i.e. x = 0.5, 
z = 0) in the region close to the inlet. Calculation does not indicate a streamwise flow 
separation at the outer wall despite the adverse pressure gradient. This may be 
because the adverse pressure gradient is weak, and i t  exists only for a short distance 
downstream for this particular value of Re and 8. For Case (I-ii) the pressure drops 
abruptly on both the inner and outer bends because of a sudden development of the 
axial-flow boundary layer immediately after the inlet. There is no adverse pressure 
gradient on both sides of the wall in the downstream direction. 

3.4. Secondary-$ow development for Case { I )  
Because of the assumption that the flow is symmetric about z = 0, the secondary flow 
will be discussed only in the upper half of the cross-section. As the flow enters the 
curved duct a secondary flow develops immediately. The secondary flow for Case 
(I-i) already exhibits a large-vortex structure at the first grid in the #-direction, 
which is # = 2.6" for the calculation of u and v. As shown in figure 4 the secondary 
flow sets up in a such a way that fluid flows counterclockwise along solid walls toward 
the inner bend while it is being pushed outward through the core region near the 
plane of symmetry. The secondary flow becomes rapidly intensified up to about 24'. 
For # ,< 18.6" the secondary flow near the plane of symmetry is outward, and is of 
the same order of magnitude as that near the upper wall. At about 18.6' the 
maximum value of the secondary-flow speed (u2+w2)i is about 0.34 on z = 0 and 
about 0.36 near the upper wall. This intensified secondary flow directed outward near 
z = 0 and the centrifugal force 6w2/( 1 +x) efficiently convey fast moving fluid 
particles towards the outer wall. This can be seen from figure 3 (a) (i). At about 21.4", 
I%, is already shifted up to 0.3, which is high considering that the maximum value of 
x, is 0.348 a t  44'. The secondary flow near the upper wall is further intensified up 
to 24", where the maximum value of (u2+u2); is about 0.46 at  about I% = 0.1 and 
z = 0.45. For q5 2 24" it becomes weaker, especially in the area of the plane of 
symmetry and the corners. From approximately the downstream position where the 
secondary flow weakens, the vortex centre moves towards the inside. Figure 4 a t  
about 41" shows this with the appearance of a severely distorted primary vortex. 

Downstream at  about 53.2", the secondary flow exhibits increasing complexity 
with the appearance of crossflow reversal near the inner bend, two large corotating 
vortices, and multiple points where a change in flow direction occurs on the plane of 
symmetry. The secondary-flow velocity on z = 0, which is u, becomes extremely small 
at 53.2', and remains small for # S 80'. At about 66", an additional weak vortex 
appears a t  the outer wall, and the secondary flow is directed inward on the entire 
plane of symmetry. This observation agrees very well with the experiment of Hille 
et al. (1985), which shows that the second vortex starts a t  about 60". Their two- 
vortex-pair structure in the entire cross-section (see their figure 10) is essentially very 
close to the present result a t  95.3' in figure 4, where the primary vortex and 
additional weak vortex are observed. At about 80' the vortex near the inner bend 
due to the crossflow reversal vanishes and the large corotating vortices begin to 
merge into a single primary vortex, which is shown at 80.1" and 95.3' in figure 4. 
However, after the large corotating vortices merge, the weak vortex near the outer 
bend vanishes a t  about 125" forming a single primary-vortex structure, and then 
appears again farther downstream of # 5 156". 

An additional calculation using #e = 240" also indicates that  the weak vortex near 
the outer bend disappears a t  about 128", which is very close to 125" obtained using 
#e = 180". However, this weak vortex reappears farther downstream. This forms the 
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two-vortex structure downstream of fi 2 160"; one is the primary vortex, and the 
other is the weak vortex near the outer wall. The two-vortex structure persists 
downstream to the exit, which is fi = 240" in the additional calculation. 

For Case (I-ii) the secondary flow experiences a quite different flow development 
from Case (1-i). At the very beginning immediately after the inlet, streamlines of the 
secondary flow depart from the wall towards the centre. The centre behaves like a 
sink-type node as shown a t  2.6" in figure 5 .  As the node shifts outward, x = 0.3 a t  
7.9", a large primary vortex begins to form and the secondary flow is intensified with 
its vortex centre shifted towards the inside. In  Case (I-ii) the secondary flow is less 
complicated than that in Case (I-i) ; neither secondary-flow reversal near the inner 
wall nor dividing of the primary vortex into two occurs. The single vortex persists 
up to about SO", and then evolves into the two-vortex structure in the secondary 
flow. As shown a t  95.3", an additional vortex forms near the outer bend and is then 
intensified. As shown a t  151" and 173.9", the vortex located near the outer wall is no 
longer minor but of the same strength as the primary vortex. The further 
development of the axial flow and the secondary flow downstream into a truly fully 
developed state is readily seen in the trend of the axial-flow development downstream 
in figure 3 ( d )  (ii), and by comparing the downstream secondary-flow vector plot in 
figure 5 with figure 6 ( d ) .  As shown previously in figure 3 ( d )  (ii), the appearance of 
wmaX near the centre for the fully developed axial velocity profile is easy to 
understand, because fast moving fluid particles are being pushed inward owing to the 
presence of the additional strong vortex at the outer bend despite the effect of 
centrifugal force. This fully developed axial flow profile in figure 3 ( d )  (ii) has almost 
the same shape as those given by Dennis & Ng (1982) and Nandakumar & Masliyah 
(1982) as the additional solution, which has the two-vortex-pair solution in the entire 
cross-section. 

3.5. Fully developed $ow 

As mentioned earlier, the downstream evolution of developing flow depends upon the 
inlet condition. For Case (I-i) the maximum value of the axial velocity wmSx appears 
greatly shifted towards the outer bend, and one primary vortex with a weak vortex 
near the outer wall develops at  the exit. For Case (I-ii) the location of the maximum 
velocity on the plane of symmetry moves towards the centre, and two equally strong 
vortices are observed a t  the exit. With these totally different downstream evolutions 
of developing flows, the nature of the ultimate flow a t  a hypothetically large distance 
downstream arises as an immediate question. To answer this it is necessary to solve 
the fully developed Navier-Stokes equations (18). Solutions of (18) are obtained for 
S =  1/6.45 by choosing the time step At and /3 to be 0 . 1 5 4 . 4  and 0.1-0.2, 
respectively . 

The friction ratio f , / f s  is defined as the ratio of the pressure gradient in a curved 
duct to that in a straight one for the same flow rate. That is, 

where s is the dimensional downstream variable in the straight duct. Using (17),  
(15a) and (19) gives the friction ratio as 

12-2 
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The value of m for a duct of square cross-section is 28.4542. The Dean number K is 
defined by (19) as 

K = Re$ = 2bRe,$. 

In  the numerical investigation a solution was obtained first for Re, = 60, and 
solutions for higher Re, were sought successively by increasing Re, with each 
previous solution as initial data. From Re, = 110, whose solution is of a single vortex, 
Re, was increased by 10. This gives two large vortices in the secondary flow for 
Re, = 120. The two-vortex solutions for Re, > 120 are easily obtained by increasing 
Re,. Another attempt was made in such a way that Re, was increased by small 
increments from Re, = 110. A series ofsolutions for Re, = 112, 113, 115, 116, and 117 
was obtained by increasing Re, gradually, which are still of one vortex. At Re, = 118, 
an additional weak vortex begins to form near the outer wall, and it grows as Re, 
increases up to 120. But it should be noted that the weak vortex near the outer bend 
remains minor compared with the primary vortex as shown in figure 6 ( b  (i), c (i)). At 
Re, = 120, Re, was increased by 0.5 for the next solution at Re, = 120.5, and two 
large vortices appear. The present calculation fails to predict the solution of one 
primary vortex with the weak vortex a t  the outer wall beyond Re, = 120. A 
bifurcation point has been obtained by decreasing the value of Re,. The critical Dean 
number K~ where the bifurcation occurs is about 116.5 for 6 = 1/6.45. 

Figure 7 shows the friction ratio fe/fs against ~ f .  It can be seen that fJf, is 
proportional to K; for the wide range of Dean number used here, except for the Dean- 
number region immediately after K~ along the upper curve. Values of W,/W, (=  2b), 
Re, K ,  and f J f S  for given Re, are presented in table 2. For 113 < Re, < 120 the 
numbers appearing first denote the values along the lower branch. For K c 116.5 only 
one solution is obtained for each Re,, or corresponding K .  From about K = 116.5 the 
f J f ,  curve becomes bifurcated into two branches, which will be called upper and 
lower branches. Along the upper branch a sudden appearance of two large vortices 
is observed even a t  Re, = 113 (i.e. K = 116.57 and see figure 6a(ii)), an increase of only 
1 from Re, = 112 where a single vortex is obtained. One vortex is observed along the 
lower branch a t  the same Re, = 113 (i.e. K = 118.17 for the lower branch). This is 
shown in figure 6(a)(i) .  Along the upper branch, two large vortices are well 
maintained for increasing Re or K .  

A smooth transition from a one- to a two-vortex solution is observed along the 
lower branch. Up to Re, = 117 (i.e. K = 124.99) only one vortex appears, but as 
Re, increases the additional vortex begins to form a t  about Re, = 118 (i.e. 
K = 126.71). When this additional vortex appears convergence is very slow in the 
numerical calculation. This newly formed vortex grows as Re, increases until it 
reaches 120 (i.e. K = 130.20 along the lower branch), but it still remains weak. 
Beyond Re, = 120, at 120.5 for exgmple, the solution disappears from the lower 
branch and jumps into the upper branch. No solution is found for Re, > 120 along 
the lower branch under the symmetry assumption about z = 0. The weak vortex near 
the outer bend is of the Taylor-Gortler type : a counter-rotating vortex pair caused 
by centrifugal instability occurring in a boundary layer along a concave wall. It is 
interesting to compare the lower and upper branches with the downstream flow fields 
of Case (I-i) and Case (1-ii), respectively. Downstream flow for Case (I-ii) is of the 
same type as the flow observed along the upper branch, in which two equally strong 
vortices are obtained and x, is located near the centre. It should be noted that 
although the flow for Case (1-ii) is not yet fully developed at q5 = 180°, the trend of 
development is towards the flow solution of the upper branch. This can be readily 
realized by comparing the secondary-flow vector plot at the exit in figure 5 with that 
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FIGURE 6. Fully developed secondary flow for S = 1/6.45. (a)(i), (ii) Re, = 113; (b) (i), (ii),  118; 
(c ) ( i ) ,  (ii), 120; (d) 180; (e) 230. (a(;), b(i), c(i))  and (a(ii), b(ii), c(ii) ,  d,  e )  are the secondary-flow plots 
along the lower and the upper branches, respectively. 
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FIGURE 7 .  Variation of the friction ratio with K:. 

Re, 
60 
80 

100 
110 
112 
113 
115 
117 
118 
119 
120 
120.5 
121 
123 
126 
130 
140 
150 
160 
170 
180 
200 
210 
220 
230 

WrlWnl Re K f c l f s  

0.5683 105.58 41.57 1.198 
0.4705 170.04 66.95 1.323 
0.4065 245.99 96.86 1.429 
0.3828 287.34 113.14 1.480 
0.3786 295.84 116.49 1.490 
0.376510.3817 300.121296.04 118.17/116.57 1.4951 1.516 
0.372510.3802 308.731302.49 121.5611 19.11 1.5051 1.537 
0.368610.3778 3 17.431309.67 124.991 12 1.93 1.51611.554 
0.366710.3766 321.811313.36 126.71/123.39 1.5211 1.562 
0.364810.3753 326.21/317.10 128.451124.86 1.5261 1.569 
0.3629/0.3740 330.661320.87 130.20/126.34 1.53111.577 

0.3733 322.78 127.09 1.581 
0.3727 324.69 127.84 1.585 
0.3700 332.39 130.88 1.600 
0.3661 344.15 135.51 1.621 
0.3610 360.12 141.80 1.649 
0.3488 401.43 158.06 1.716 
0.3374 444.62 175.07 1.778 
0.3267 489.74 192.83 1.837 
0.3167 536.86 211.39 1.892 
0.3072 586.03 230.75 1.943 
0.2897 690.32 271.81 2.036 
0.2818 745.19 293.42 2.080 
0.2745 801.45 315.57 2.122 
0.2679 858.40 337.99 2.166 

TABLE 2. Reynolds and Dean numbers, and friction ratio a t  6 = 116.45 
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at Re, = 180 in figure 6 4  and by observing the inward movement of x, downstream 
in figure 3(d)(ii). 

Since the solution along the lower branch cannot be obtained for Re, > 120, the plot 
of f,,/f, against K; is simply extrapolated by a straight line for Re, > 120 (i.e. 
K > 130.2 along the lower branch). The pressure gradient i3p/i3$ for Case (I-i) is 
calculated to be 0.572 (0.578 in the additional calculation) a t  the exit, whose 
corresponding friction ratio f,/f, is 1.79. This value of the friction ratio marked with 
a black dot in figure 7 closely follows a straight line which is extended from Re, = 
120 by a dashed line. Therefore, it  can be said that the downstream flow solution of 
Case (I-i) is of the type of the lower branch, and that Hille et al.’s finding of the 
downstream flow pattern with the additional vortex is also of the lower-branch type, 
in which the smooth transition from one to two vortex pairs occurs in the entire 
cross-section. 

Then, the question arises as to why the lower-branch type of the fully developed 
solution is extremely difficult or impossible to obtain for Re, > 120. It should be 
noted that the lower-branch solution is being sought under the symmetry assumption 
about z = 0 even for sufficiently large Re,. Benjamin (1978) has reported the three- 
cell mode of a Taylor vortex between concentric cylinders with a finite length. Cliffe 
&, Mullin (1985) also found the appearance of odd number of vortices beyond a 
certain Reynolds number in the Taylor-experiment problem. The fluid flow between 
cylinders is no longer symmetric about the midplane between stationary endwalls in 
the presence of the odd number of vortices. Recently, Winters (1984) reported an 
asymmetric solution for the fully developed fluid flow in a curved tube of rectangular 
cross-section. With those symmetry-breaking flow patterns it may be considered 
that the symmetric flow of lower-branch type is not possible beyond a certain Re,. 
The appearance of an asymmetric flow structure reported by Hille et al. (see the 
symmetry-breaking secondary flow pattern in their figure 10) may also support this, 
although their secondary-flow structure is essentially the same as predicted by the 
present developing-flow calculation under the symmetry assumption about z = 0 in 
the sense that the secondary flow has the primary vortex with the additional weak 
vortex at the outer wall. It can be also imagined that the flow with inlet velocity 
given by (150,) evolves to be asymmetric far downstream. This suggests the possible 
existence of a fully developed solution in a different form. The fully developed-flow 
equations, which have been thought of as the Navier-Stokes equations with no 
derivatives with respect to the downstream variable, assuming a constant pressure 
gradient in the downstream direction, may no longer be valid for the purpose of 
seeking the lower-branch solution beyond a certain Reynolds number (i.e. Re, > 120 
and S = 1/6.45 in this study). Another form of the fully developed solution, which is 
of the lower-branch type for large Reynolds or Dean number, may exist in such a way 
that the flow changes periodically in the downstream direction, 

Winters ( 1984) showed two limiting points and the symmetry-breaking bifurcation 
point (L,, L,, and B in his notation) in the plot of the mean axial velocity against the 
pressure gradient. The first limiting point L, is Dn = 80.1 (i.e. K = 113.3, where Dn 
is the Dean number he has used), the second limiting point L, is Dn = 89.1 (i.e. 
K = 126), and the point B is Dn = 91.7 (i.e. K = 129.7). Comparing these points with 
our critical values of Dean number indicated in figure 7, we can interpret the limiting 
point L, as the bifurcation point K, = 116.5, L, as the transition point from the one 
to two vortices occurring a t  K ,  = 126.7 along the lower branch, and B as the 
maximum Dean number K~ = 130.2 beyond which no symmetric solution is obtained 
on the lower branch. The symmetry-breaking point appears immediately after 
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K~ = 126.7 where a smooth transition from the one to two vortices occurs. The 
counter-rotating vortices of Taylor-Gortler type (taking into account the lower half 
of the cross-section) which appear weak and small near the outer bend from 
tc2 = 126.7 readily interact with each other. Once interaction occurs the additional 
vortices begin to move and they swing up and down in the presence of a small 
asymmetric perturbation. This causes the flow to be asymmetric and does not allow 
the flow to be fully developed far downstream. 

Since the symmetry-breaking interaction between the weak vortices occurs on a 
small scale within a limited area bounded by the primary vortex and the outer wall, 
it does not seem to affect the overall flow situation (e.g. primary vortex, axial flow 
profile, pressure gradient, etc.). That is why the value of the friction ration calculated 
at  the exit of developing flow agrees very well with that predicted by the extension 
of the straight line in figure 7. 

3.6. Flow development in a highly curved duct for Case (11) 
As Reynolds number and curvature ratio increase, the flow development displays 
more complicated phenomena. For Re = 790 and S = 1/2.3 (i.e. K = 521) with the 
fully developed straight-duct velocity a t  the inlet, the axial-flow development in the 
entrance region immediately after the inlet is similar to that for Case (1-i). However, 
it  is noted from figure 8 that the axial flow near the inner bend undergoes a rapid 
change in which w decreases quickly forming a step-like velocity profile a t  about 
37" < Q, < 47". For Q, > 47.5" the step which appears flat near the inner wall becomes 
severely eroded to yield a second maximum near the inner bend. The first maximum, 
which is wmax of course, is shifted toward the outer wall. At about 47.5" the first 
maximum value of w on z = 0 appears shifted to x = 0.36, with the second maximum 
a t  x = - 0.3. The valley between the two maxima remains deep up to about 70" 
where the location of the first maximum is x = 0.4. 

The step profile appearing near inner bend at 47.5" has been reported 
experimentally by Agrawal et al. (1978) and numerically by Soh & Berger (1984) for 
flow in a curved pipe of circular cross-section. The axial velocity profile with two 
maxima and a deep valley on the plane of symmetry is also reported experimentally 
by Humphrey et al. (1977) for a curved duct of square cross-section. Although their 
values of Re and S are identical with the present ones, it is not possible to compare 
the current results directly with their experimental data because their experiment 
has been carried out for flow in a 90" turning duct attached to long straight ducts 
both upstream and downstream. However, there is some quantitative agreement ; 
their values of the first maximum of w, which are about 1.9 a t  60" and 1.8 a t  90" agree 
very well with w,,, = 1.91 at 58.2", 1.81 at 88" and 1.76 a t  94.8" of the present 
calculations. If the axial velocity profile is drawn on the plane parallel to z = 0, the 
second maximum appears sharper and the valley runs deeper. The valley on the 
plane of symmetry begins to be filled for Q, > 70" and becomes flat farther 
downstream as shown a t  159.7" and 180" in figure 8. The value of w,,, on z = 0 
becomes smaller and is about 1.67 near the exit. However, there still remains a 
vestige of the valley in the axial velocity profile on the plane (e.g. 0.28 < z < 0.36) 
parallel to the plane of symmetry even at 180". 

Figure 9 shows the pressure variation along the inner and outer bends on z = 0, 
which are approximately a t  i = 1 and j = 1,  and i = 16 and j = 1, respectively. The 
pressure a t  the inner bend decreases monotonically with $, whereas there is a 
considerable pressure rise along the outer wall causing the streamwise flow 
separation. 
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FIGURE 9. Pressure variation with q5 along the inner and outer walls. 
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Early development of the secondary flow for Case (11) is similar to that for Case 
(I-i) in that the primary vortex forms immediately after the inlet and then becomes 
intensified as shown in figure 10. The maFnitude of the secondary flow becomes very 
large. For example, the value of (u2+v2)f  becomes 0.6 near the upper wall (x = 0.15, 
z = 0.45) a t  25", 0.83 (x = 0, z = 0.45) a t  35" and reaches its maximum value of 0.87 
(x = -0.08, z = 0.45) a t  about 40". The secondary flow is intensified over the entire 
cross-section, especially near the solid wall and on the plane of symmetry. Starting 
from about 25" two small recirculating zones appear in the secondary flow near the 
upper corners of the outer and inner walls. This is shown a t  34.9" in figure 10. 

The streamwise-flow reversal, which is of a bubble-type separation, is observed 
only near the upper corner of the outer bend for about 9" 5 q5 5 37.4". It is clear from 
the secondary-flow development for about q5 5 45" that  despite the presence of the 
adverse pressure gradient, the axial-flow separation would not occur a t  the outer 
bend near the plane of symmetry because the secondary flow directed outside on 
z = 0 is so powerful that the axial-flow boundary layer a t  the outer bend on z = 0 
becomes 'squeezed ' by the oncoming secondary flow. Consequently, the linear 
momentum near the outer wall is large enough on = 0 to overcome the adverse 
pressure force. The magnitude of the secondary flow is very small before and during 
the duration of the minor vortex near the upper corner a t  the outer bend. This leads 
to virtually no contribution of the secondary flow to the axial flow development 
there, and of course the axial velocity itself is small in the corner region owing to the 
strong viscous effect. Therefore, the axial flow with small momentum there succumbs 
to the adverse pressure force and separates. 

At about 45" an additional secondary-flow reversal occurs a t  the inner bend near 
z = 0 with the primary vortex severely distorted and elongated. This crossflow 
reversal is deemed to be responsible for the appearance of the step-like axial velocity 
profile, which will be further eroded to render the second maximum with a deep 
valley for q5 > 47.5" in figure 8. Figure 10 at  55.4" shows this extremely distorted 
primary vortex. Then, at 66.6" the primary vortex is divided into two large 
corotating vortices with vanishing of the minor vortex near the upper corner at the 
outer bend. 

The kinematic plausibility of the complicated secondary flow under the assumption 
that the flow is symmetric about z = 0 may be demonstrated by a topological rule. 
Kao, Burstadt & Johns (1983) introduce a rule which is applicable to streamlines in 
the cross-section of a duct with no centre body (i.e. simply connected cross-section 
geometry), as 

where E N  denotes the sum of the indices for node points, xs the sum of the indices 
for saddle points, and subscripts N and 8' denote the half-node and half-saddle on 
the solid boundary of the cross-section, respectively. The index value of N is 1 and 
S is - 1 .  

The sketches in figure 10 illustrate the local behaviour of the secondary-flow 
streamlines on the upper half of the cross-section showing the node (shown as a cross) 
and saddle (black dot) a t  different downstream positions. At 66.6", where the 
distorted primary vortex is divided, the secondary-flow streamlines exhibit a 
stagnation-type saddle between the corotating primary vortices. The nodes are of 
focus type. In this case, for example, taking into consideration the symmetric 
secondary flow in the lower half of the cross-section, the summations of each index 
are E N  = 8, C, = - 3 (two in the upper and lower halves of the cross-section, and one 
on the plane of symmetry), E N ,  = 0, and x,, = - 8, so that (22) holds. It is noted from 

C,+CS+i(Z"+C:S') = 1, (22) 
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FIGURE 10. For caption see facing page. 
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FIauRE 10. Secondary-flow development for Case (11): x , node; o, saddle point. 

the sketch a t  66.6" that the streamlines in the area neighbouring the corotating 
vortices are highly wavy. The wavy streamlines develop into another large vortex in 
such a way that they form a counter-rotating vortex structure relative to the existing 
two corotating vortices as shown a t  about 78.5". It is also noted that the vortex due 
to the secondary-flow reversal near the inner bend becomes larger in size and 
strength as the flow develops downstream. One of the corotating vortices at the left 
side becomes further divided into another pair of corotating vortices (see figure 10 a t  
105.3', 120.4") with a gradually developing additional vortex a t  the outer bend. 
When this occurs i t  is very difficult to discern the locations of the node and the saddle 
owing to the limited grid resolution. However, with the help of the kinematic 
requirement (22) we may determine possible places for the additional node and 
saddle, as shown at 105.3" and 120.4" in the sketches. Figure 10 at  120.4" shows the 
most complicated secondary-flow structure. Prom a closer look a t  the saddles 
marked with black dots on x = 0 from 78.5" it can be seen that they move closer and 
merge into one, which is finally lifted from the plane of symmetry as shown at  120.4". 
When this lift of the node from x = 0 occurs, the secondary flow is directed inside on 
the entire plane of symmetry even in the presence of the secondary-flow reversal a t  
the inner bend. After this lift of the node the secondary-flow reversal a t  the inner 
bend vanishes, as shown in the vector plot at 136.8". 

At about 137" the secondary flow again exhibits two corotating primary vortices, 
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which are merged into a single primary vortex. As shown a t  about 154.9' one of the 
corotating vortices a t  the right side appears to be engulfed by the other a t  the left 
side. From the last vector plot of the secondary flow in figure 10 it can be seen that 
the additional vortex, which is weak also, is located away from the plane of 
symmetry. The downstream location a t  174.7" is the last position of the u, v and p 
calculations. Calculation shows that even a t  the exit the secondary flow is changing 
significantly, which indicates that  the flow is not fully developed until much farther 
downstream. 

4. Conclusion 
Fluid flow in a curved duct of square cross-section for Re = 574 and 6 = 1/6.45 (i.e. 

K = 226) develops into quite different states downstream, depending upon the inlet 
condition. With the appearance of dual solutions of the fully developed Navier- 
Stokes equations, it can be said that the flow becomes fully developed along either 
of two branches into which the solution is bifurcated. It is also found that there are 
three critical Dean numbers for 6 = 1/6.45. (i) K~ = 116.5 is the first, called the 
bifurcation point, below which only there is one solution of the one-vortex type, and 
above which two solutions are obtained. (ii) K~ = 126.7 is the second, above which an 
additional weak vortex (Taylor-Gortler type) is observed a t  the outer wall along the 
lower branch. (iii) The third is K~ = 130.2, above which a lower-branch solution is no 
longer obtained under the symmetry assumption because of the asymmetric vortex 
interaction in the small scale near the outer bend, and the flow presumably becomes 
periodic in the downstream direction. 

To confirm the lower-branch- type downstream-flow behaviour i t  is necessary to 
employ much finer grids near the outer bend imposing a periodic in-and-out flow 
boundary condition for an appropriate interval in the downstream direction. 

The author is grateful to Dr H. C. Kao a t  NASA Lewis Research Centre for 
discussion about the topological arguments on the secondary flow, and also is 
indebted to Mr R. Cavicchi and to Dr David Jacqmin for careful reading of the 
manuscript and many kind comments. 
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